An Overview of Lie Group Variational Integrators and Their Applications to Optimal Control

نویسنده

  • MELVIN LEOK
چکیده

We introduce a general framework for the construction of variational integrators of arbitrarily high-order that incorporate Lie group techniques to automatically remain on a Lie group, while retaining the geometric structure-preserving properties characteristic of variational integrators, including symplecticity, momentum-preservation, and good long-time energy behavior. This is achieved by constructing G-invariant discrete Lagrangians in the context of Lie group methods through the use of natural charts and interpolation at the level of the Lie algebra. In the presence of symmetry, the reduction of these G-invariant Lagrangians yield a higher-order analogue of discrete Euler–Poincaré reduction. As an illustrative example, we consider the full body problem from orbital mechanics, which is concerned with the dynamics of rigid bodies in space interacting under their mutual gravitational potential. The importance of simultaneously preserving the symplectic and Lie group properties of the full body dynamics is demonstrated in numerical simulations comparing Lie group variational integrators with integrators that are not symplectic or do not preserve the Lie group structure. Lastly, we demonstrate the application of Lie group variational integrators to the construction of optimal control algorithms on Lie groups, and describe a modified scheme that improves the numerical efficiency of the computation, while maintaining the accuracy of the computed solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PHYSICAL MATHEMATICS SEMINAR Lie Group and Homogeneous Variational Integrators and their Applications to Geometric Optimal Control Theory

The geometric approach to mechanics serves as the theoretical underpinning of innovative control methodologies in geometric control theory. These techniques allow the attitude of satellites to be controlled using changes in its shape, as opposed to chemical propulsion, and are the basis for understanding the ability of a falling cat to always land on its feet, even when released in an inverted ...

متن کامل

Lie-Poisson integrators: A Hamiltonian, variational approach

In this paper we present a systematic and general method for developing variational integrators for LiePoisson Hamiltonian systems living in a finite-dimensional space g∗, the dual of Lie algebra associated with a Lie group G . These integrators are essentially different discretized versions of the Lie-Poisson variational principle, or a modified Lie-Poisson variational principle proposed in th...

متن کامل

Lie Group Variational Integrators for the Full Body Problem

We develop the equations of motion for full body models that describe the dynamics of rigid bodies, acting under their mutual gravity. The equations are derived using a variational approach where variations are defined on the Lie group of rigid body configurations. Both continuous equations of motion and variational integrators are developed in Lagrangian and Hamiltonian forms, and the reductio...

متن کامل

Hamilton-Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties

In this paper, structure-preserving time-integrators for rigid body-type mechanical systems are derived from a discrete Hamilton–Pontryagin variational principle. From this principle, one can derive a novel class of variational partitioned Runge– Kutta methods on Lie groups. Included among these integrators are generalizations of symplectic Euler and Störmer–Verlet integrators from flat spaces ...

متن کامل

Hamilton-Pontryagin Integrators on Lie Groups Part I: Introduction & Structure-Preserving Properties

In this paper structure-preserving time-integrators for rigid body-type mechanical systems are derived from a discrete Hamilton-Pontryagin variational principle. From this principle one can derive a novel class of variational partitioned Runge-Kutta methods on Lie groups. Included among these integrators are generalizations of symplectic Euler and Störmer-Verlet integrators from flat spaces to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007